On the Jordan Decomposability for Computable Functions of Bounded Variation
نویسندگان
چکیده
According to Jordan Decomposition Theorem, every real function of bounded variation can be decomposed to a difference of two increasing functions. In this paper we will show, among others, that an effective version of this theorem does not hold for computable function of bounded variation.
منابع مشابه
On the Effective Jordan Decomposability
The classical Jordan decomposition Theorem says that any real function of bounded variation can be expressed as a difference of two increasing functions. This paper explores the effective version of Jordan decomposition. We give a sufficient and necessary condition for those computable real functions of bounded variation which can be expressed as a difference of two computable increasing functi...
متن کاملEffectively Absolute Continuity and Effective Jordan Decomposability
Classically, any absolute continuous real function is of bounded variation and hence can always be expressed as a difference of two increasing continuous functions (socalled Jordan decomposition). The effective version of this result is not true. In this paper we give a sufficient and necessary condition for computable real functions which can be expressed as two computable increasing functions...
متن کاملComputable Jordan Decomposition of Linear Continuous Functionals on $C[0;1]$
By the Riesz representation theorem using the Riemann-Stieltjes integral, linear continuous functionals on the set of continuous functions from the unit interval into the reals can either be characterized by functions of bounded variation from the unit interval into the reals, or by signed measures on the Borel-subsets. Each of these objects has an (even minimal) Jordan decomposition into non-n...
متن کاملOn the generalization of Trapezoid Inequality for functions of two variables with bounded variation and applications
In this paper, a generalization of trapezoid inequality for functions of two independent variables with bounded variation and some applications are given.
متن کاملp-Lambda-bounded variation
A characteriation of continuity of the $p$-$Lambda$-variation function is given and the Helly's selection principle for $Lambda BV^{(p)}$ functions is established. A characterization of the inclusion of Waterman-Shiba classes into classes of functions with given integral modulus of continuity is given. A useful estimate on modulus of variation of functions of class $Lambda BV^{(p)}$ is found.
متن کامل